Wednesday, March 2, 2011

New Solutions For Acid Rain

Most people have heard of acid rain, widely discussed as a threat to forests downwind from coal-fired power plants. Acid rain is primarily caused by sulfur dioxide (SO2), a byproduct of burning coal, oil or gas that is tinged with sulfur. Because sulfur is a commonly occurring element, it is virtually impossible to find deposits of these fossil fuels that do not contain sulfur. When sulfur dioxide is emitted as these fuels are burned, it enters the atmosphere and reacts with water. The outcome of this reaction is sulfuric acid (H2SO4); it is this acid that gives the rain its name.

Not a Recent Problem

Most nations have moved to burning low-sulfur fossil fuels such as low-sulfur coal. Since acid rain hasn't been in the news lately, it is assumed by the public to be a t hreat that has passed and in fact the measures put in place in the 1980's and 90's have made a significant impact on the problem. Upon closer examination though, the rain downwind from fossil fuel power plants is still acidic.

As one can see, there was a significant reduction in the acidity of the rain, especially in the Great Lakes region over the intervening years. That said, the pH of 'clean', natural rain is about 5.6; as a reference, vinegar stands around 3.0. Given this, the rain in the region is still quite acidic and capable of causing significant environmental issues.

The Impact of Sulfur Dioxide

After it has reacted in the atmosphere, sulfur dioxide falls to the Earth as acid rain. The most obvious impact of acid rain is one that we can visibly see. Plant life suited to normal-pH rain does not thrive well and will die in acid rain regions. The forests of Europe were devastated by acid rain. Figure 3 is an area of the Black Forest in Germany where there was significant tree-die-off from acid rain.

Effects that are not seen, however, may be even more significant. When acid rain falls in lakes, rivers and streams, the pH of the water is altered. Lakes that become acidified cannot support the variety of life that they once did. Crayfish, freshwater clams and muscles are the first to disappear and as these creatures are removed from the food chain, others begin to die, as well. Lakes in

limestone-rich areas are less prone to these die-offs as the limestone can neutralize the acid; lakes in regions where granite is common do not have this natural buffer and are the first to show such distress.

In addition, as the aquatic populations are reduced, the animals that rely upon the lakes for food and shelter are also impacted. Fish-eating birds and land mammals migrate to other areas and frogs, snails and other lake-dwellers die off from one generation to the next.

Didn't We Already Solve the Problem? What More Can Be Done?

One solution employed in the 1980's and 90's was to build higher stacks or chimneys. This effectively put the sulfur higher into the atmosphere and the acid rain moved further downwind. It quickly became obvious that this was just pushing the problem – not solving it. In fact in 1988, Prince Charles of Britain recognized this, saying: "Our responsibilities do lie in not exporting our problems


The ending to this story doesn't need to be so gloomy, though. There are new technologies that are being employed at power plants around the world. One such technology is flue gas desulfurization or FSD, essentially removing the sulfur dioxide from the combustion gases as they ascend the chimney flue. The three main methods employed to accomplish FSD are wet-scrubbing, dry-scrubbing, and injection. In wet and dry scrubbing, the two most commonly used methods; a slurry of limestone or lime is sprayed through the chimney as the gases rise. This lime reacts with the SO2 and the resulting compounds 'rain' down to be collected at the chimney's base.

There are also emerging technologies that could surpass the efficacy of lime scrubbing. The Chendu power plant in China and the Pomorzany power plant in Poland have installed new technology in which the flue gases are blasted with electrons and then exposed to ammonia. This reaction is said to leave little un-reacted SO2 that will escape the chimney and additionally it shows a similar

reduction in nitrous oxide (NOx). Though still in the early stages of testing, this may lead to very clean power plants in the developing world offering hope that the same problems that plagued Europe and North America, such as acid rain, might be avoided as these emerging economies expand and develop in the 21st century.


  1. Thank You! I used this for a project and got a great grade! :)

  2. Thanks for sharing, this info will help to better understand the issue of acid rain